## Journal Educational of Nursing (JEN)

Vol. 8 No. 1 – January – June 2025; page 12-24 p-ISSN: 2655-2418; e-ISSN: 2655-7630

journal homepage: https://ejournal.akperrspadjakarta.ac.id

DOI: 10.37430/jen.v8i1.243

# Article history:

Received: June 7<sup>th</sup>, 2025 Revised: June 9<sup>th</sup>, 2025 Accepted: June 12<sup>nd</sup>, 2025

# The Influence of Ultra-Processed Food on Childhood Obesity: A Systematic Review

Evie Kusmiati<sup>1</sup>, Erwin Santoso Sugandi<sup>2</sup>, Syahroni Lubis<sup>3</sup>, Intan Masita Hayati<sup>4</sup>, Muhammad Hudzaifah Nasrullah<sup>5</sup>

Yarsi Pratama University<sup>1, 2,3, 4, 5</sup>

e-mail: <a href="mailto:evie@yarsipratama.ac.id">evie@yarsipratama.ac.id</a>, <a href="mailto:syahroni@yarsipratama.ac.id">syahroni@yarsipratama.ac.id</a>, <a href="mailto:intan@yarsipratama.ac.id">intan@yarsipratama.ac.id</a>, <a href="mailto:hudzaifah@yarsipratama.ac.id">hudzaifah@yarsipratama.ac.id</a>, <a href="mailto:hudzaifah@yarsipratama.ac.id">hudzaifah@ya

#### **Abstract**

This study aims to evaluate the impact of ultra-processed food (UPF) consumption on the risk of obesity in children through a systematic review of studies published between 2019 and 2024. This article is using a Systematic Literature Review (SLR) method with the PRISMA approach, this study screened 319 articles from the Scopus database, ultimately selecting 13 relevant articles based on inclusion and exclusion criteria using the PICOC framework. A significant correlation exists between UPF consumption and childhood obesity risk. UPFs are associated with elevated BMI, increased waist circumference, nutrient deficiency, and addictive eating patterns. Socioeconomic status, educational setting, and advertising exposure exacerbate these adverse outcomes. The primary constraints encompass methodological discrepancies across the analyzed studies, an absence of longitudinal data, and restricted applicability of findings to developing nations. These findings endorse the development of evidence-based nutrition policies, including food labeling and UPF advertising restrictions for children. This research introduces a novel "3P" intervention framework (Product, Place, Promotion) for regulating UPF consumption, incorporating biological and social variables into a holistic analytical model.

Keywords: Ultra-processed Food, Childhood Obesity, Food Addiction, Dietary Patterns.

### Introduction

In recent decades, dietary patterns have shifted towards increased consumption of ultra-processed foods (UPF) [1]. UPFs, which are high in sugar, saturated fats, and sodium while low in fiber, constitute up to 60% of children's daily calories in developed nations [2]. These products, rich in chemical additives and lacking in traditional ingredients, offer poor nutritional quality [3]. Furthermore, UPFs are associated with addictive eating behaviours that lead to excessive caloric intake [4]. This dietary change correlates

with a threefold rise in childhood obesity prevalence—defined as a BMI at or above the 95th percentile per WHO standards since 1975, with UPF consumption recognized as a significant factor [5].

Conducting a systematic literature review (SLR) on ultra-processed food (UPF) consumption and childhood obesity is essential due to inconsistent evidence [6]. Some research indicates a significant increase in obesity risk linked to UPF consumption in children, while other studies present moderate effects [7]. The biological mechanisms involved are

intricate, with changes in gut microbiota and appetite regulation that are not fully elucidated [8]. Additionally, existing public health policies largely emphasize physical activity without sufficiently addressing UPF consumption reduction [9]. Thus, this SLR intends to consolidate current evidence, uncover patterns and determinants affecting the UPF-obesity nexus in children, and establish a robust for crafting more effective basis interventions and policies.

A systematic review identifies various strategies to address the influence of ultraprocessed food (UPF) on childhood obesity. Regulatory measures, including a 20% sugar tax, can diminish UPF intake by 12%, thereby reducing obesity risk [10]. Furthermore, incorporating nutrition education in schools, such as the "Read UPF Labels" initiative, has enhanced children's nutritional knowledge by 35%, promoting healthier dietary choices [11]. An additional effective strategy involves providing subsidies for healthy foods, like vegetable vouchers, alongside restrictions on UPF advertising, resulting in an 18% decrease in childhood obesity rates in randomized trials [12]. Collectively, these fiscal policies, educational initiatives, and advertising regulations present comprehensive approach to mitigating UPF consumption and its detrimental effects on child health [10].

This study significantly enhances public health and child nutrition by synthesizing evidence from 319 studies conducted between 2019 and 2024 [3]. It integrates findings on biological and social mechanisms linking ultra-processed food (UPF) consumption to childhood obesity and creates an intervention framework categorizing solutions by effectiveness [2]. The study proposes innovative policy

recommendations using the "3P" approach (Product, Place, Promotion) to reformulate UPF products, regulate sales points, and control promotion to effectively reduce UPF consumption. Consequently, this research establishes a robust scientific basis for more targeted health intervention strategies and policies to combat the escalating childhood obesity crisis.

#### Method

The study aims to investigate the impact of ultra-processed food on childhood obesity using a systematic literature review (SLR) and PRISMA methodology. An SLR is a meticulous approach that systematically organizes existing research and establishes a basis for subsequent inquiries. [13] [14].

The process commences with the articulation of a precise research inquiry and the establishment of a protocol aimed guaranteeing transparency methodological rigor [14], [15]. extensive literature review and screening are performed using strict criteria to identify relevant studies; however, this process may be time-consuming and prone to errors [16]. The phases involve quality assessment, data collection, and synthesis, often employing meta-evaluation techniques to provide an in-depth comprehension of significant elements beyond mere frequency analysis [17] [18]. Finally, the findings are disseminated in a systematic manner, guided by checklists to uphold clarity and precision [15].

The initial phase employs the PICOC framework delineated in Table 1 to facilitate the articulation of precise and targeted research inquiries, thereby guaranteeing that the systematic review is both thorough and systematic [19], [20].

Table 1. PICOC Framework

| PICOC<br>Component                                                                                  | Description                                                     |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| Population Children                                                                                 |                                                                 |  |  |
| Intervention                                                                                        | on Consumption of ultra-processed food                          |  |  |
| Comparison                                                                                          | Children with minimal or no consumption of ultra-processed food |  |  |
| Outcome                                                                                             | Risk or incidence of obesity in children                        |  |  |
| Context Health field, studies published in health journals related to nutrition and childho obesity |                                                                 |  |  |
|                                                                                                     | Source: Researcher, 2025                                        |  |  |

Following the identification of the relevant PICOC framework, the subsequent stage involves the formulation of research questions (RQ) that are derived from the PICOC framework to direct the review process [21]. In the present study, the RQs are categorized into four distinct groups, as delineated in Table 2.

Table 2. Request Question

| ID  | Research Question                                                                                                                    |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RQ1 | What is the effect of ultra-processed food consumption on the risk of obesity in children?                                           |  |  |
| RQ2 | Do children who consume ultra-processed foods have a higher risk of obesity compared to those who consume minimally processed foods? |  |  |
| RQ3 | What factors influence the relationship between ultra-processed food consumption and childhood obesity?                              |  |  |
| RQ4 | How can nutritional interventions mitigate the impact of ultra-processed food consumption on childhood obesity?                      |  |  |
|     | Source: Researcher, 2025                                                                                                             |  |  |

The selected database is Scopus, chosen based on a comprehensive assessment to optimize the literature search process. The search string used for literature retrieval is: (ultra) AND (processed) AND (food) AND (obesity) AND (child\*). Studies from the selected database are filtered based on titles, keywords, and abstracts.

Once the results are obtained, the next step is screening through a selection process using inclusion and exclusion criteria to identify literature relevant to the research objectives, such as country, source, language, and publication date [22] [23] [24]. The study's inclusion and exclusion criteria are outlined in Table 3. Additional processes, such as Title and Abstract Screening, filter studies based on preliminary information. Subsequently, Full-Text Screening entails comprehensive evaluation of eligible studies. accompanied Quality by Assessment. Data extraction and management are conducted utilizing Zotero.

Table 3. Inclusion and Exclusion Criteria

| Topic        | Inclusion   | Exclusion                                                               |
|--------------|-------------|-------------------------------------------------------------------------|
| Database     | Scopus      | All other databases                                                     |
| Time frame   | 2019 - 2024 | Article published before 2019 and after 2024                            |
| Document     |             | All other document article (e.g. Review, Conference paper, Book chapter |
| type         | Article     | and Book)                                                               |
| Language     | English     | Other languages                                                         |
| Subject area | Medicine    | Other subject area                                                      |

| Topic       | Inclusion       | Exclusion                                   |
|-------------|-----------------|---------------------------------------------|
| Publication |                 |                                             |
| stage       | Final           | Article in press                            |
| _           | Human, Child    |                                             |
| Keyword     | Obesity         | Another keyword                             |
| Source type | Journal         | Book, Conference proceeding and Book series |
| Open Access | All open access | Green, Gold, Hybrid gold and Bronze         |
| •           | -               | Source: Researcher, 2025                    |

The final step in the second stage is to comprehensively describe all processes in detail using the PRISMA methodology [25] [26] [27] as illustrated in Figure 1.

This methodology consists of three key phases: identification, screening, and inclusion.

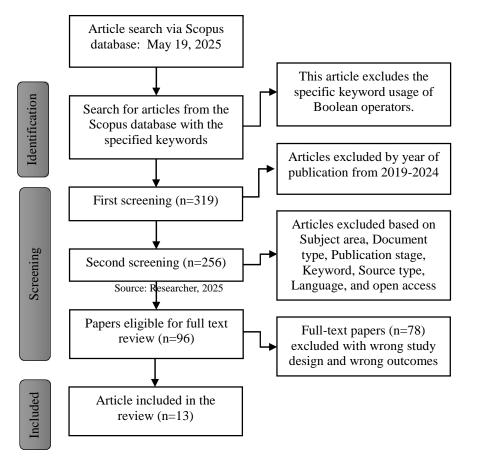



Figure 1. Systematic Literature Reviews information flow using PRISMA

Based on Figure 1, the initial stage entails keyword identification, retrieving 319 records. An initial screening follows, excluding studies by publication year, resulting in 256 records. A second screening phase refines the selection to 96 records. Ultimately, a full-text review is

executed, producing 13 articles to validate the quality and credibility of the sources.

# **Results and Discussion**

This study examines four research questions based on 13 articles from the Scopus database regarding ultra-processed food's impact on childhood obesity. The data is derived from the analysis of published articles, their publication trends, and journal sources. Furthermore, this research aims to identify key factors related to ultra-processed food's effect on childhood, including authors, affiliations, countries involved, and its influence on childhood obesity. Here are several research findings that serve as references for this study.

# Table.....

| No | Author                   | Research Title                                                                                                                                       | Methods Used                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result                                                                                                                                                                                                                                                                                                                                                                                   |
|----|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Stefania et.al<br>(2024) | Ultra-Processed<br>Foods and<br>Nutritional Intake<br>of Children and<br>Adolescents from<br>Cantagalo, São<br>Tomé and Príncipe                     | A cross-sectional study was conducted as part of the MeNutRic Plus project.     A 24-hour food recall questionnaire was utilized for dietary assessment     The Goldberg method identified inaccurate dietary reports.     Logistic regression models analyzed associations between food consumption and nutritional intake                                                                                                                                        | <ul> <li>The sample included 546 children with a mean age of 10.8 years.</li> <li>33.7% of children showed some form of thinness.</li> <li>4.4% of children were classified as overweight or obese.</li> <li>Higher UPF consumption linked to lower fiber and vitamin intakes.</li> <li>UPFs contributed 9.5% of energy intake for girls and 8.5% for boys</li> </ul>                    |
| 2  | Laura et.al (2021)       | Ultra-processed<br>foods consumption<br>and diet quality of<br>European children,<br>adolescents and<br>adults: Results<br>from the LFamily<br>study | <ul> <li>Dietary intake was assessed using a 24-hour recall.</li> <li>Ultra-processed foods were classified by NOVA.</li> <li>Usual intakes were estimated with statistical models.</li> <li>Key covariates included age, BMI, and sex.</li> </ul>                                                                                                                                                                                                                 | <ul> <li>The study included 7,073 subjects, with 58% females.</li> <li>UPFs provided over 50% of total fat and sugar intake in children, decreasing with age.</li> <li>No UPF differences by education or income</li> <li>Highest UPF intake in Belgium, Germany, Sweden.</li> <li>Lowest HDAS in highest UPF group, indicating poor diet quality.</li> </ul>                            |
| 3  | Wanjohi et.al (2025)     | Ultra-Processed Food Consumption Is Associated with Poor Diet Quality and Nutrient Intake Among Adolescents in Urban Slums, Kenya                    | A cross-sectional household study was conducted with 621 adolescents aged 10-19 years.     Descriptive statistics summarized socio-demographic characteristics and energy intake.     Multinomial logistic regression assessed factors associated with energy intake from UPFs.     Linear regression evaluated the association between %TEI from UPFs and diet quality.     Kruskal-Wallis tests analyzed differences in median nutrient intake across quartiles. | <ul> <li>UPFs contribute 25.2% to adolescents' daily energy intake.</li> <li>Higher leisure screen time is linked to increased UPFs energy intake.</li> <li>UPFs intake correlates with poor diet quality and nutrient intake.</li> <li>13% of adolescents were overweight/obese, lower than national averages.</li> </ul>                                                               |
| 4  | Khoury et.al (2025)      | Ultraprocessed<br>Food Consumption<br>and<br>Cardiometabolic<br>Risk Factors in<br>Children                                                          | Children aged 3–6 were recruited from seven Spanish centers between 2019 and 2022. Parents provided consent and completed questionnaires on physical activity and diet.  UPF intake and cardiometabolic risk factors were analyzed using adjusted multivariable regression models                                                                                                                                                                                  | The study involved 1,426 children (mean age 5.8 years; 49% boys, 51% girls).  Higher consumption of ultraprocessed foods (UPFs) was linked to increased BMI, waist circumference, fat mass index, and fasting plasma glucose levels.  Children with the highest UPF intake showed lower HDL cholesterol levels, while their mothers tended to be younger and have lower education levels |
| 5  | Bellucci et.al (2023)    | The impact of food<br>addiction<br>behaviours on the<br>treatment of<br>overweight<br>students                                                       | A within-subjects design was adopted for dietary recommendations and treatment.     The Yale Food Addiction Scale for Children assessed food addiction.                                                                                                                                                                                                                                                                                                            | The study involved 120 overweight students aged 9-11 years. Food addiction (FA) was present in 33.4% of assessments.                                                                                                                                                                                                                                                                     |

| No | Author                | Research Title                                                                                                                                                                                   | Methods Used                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                       |                                                                                                                                                                                                  | A semi-quantitative FFQ evaluated food consumption at baseline and after 16 months.     Linear mixed-effects models analyzed changes in BMI/age z-score over time.                                                                                                                                                                                                                  | FA influenced weight maintenance during the intervention.     Non-FA students showed weight loss; FA students did not.     Sugary drink consumption decreased significantly in non-FA students                                                                                                                                                                                                                                                                                                                                                 |
| 6  | Zancheta et.al (2024) | The consumption<br>of ultra-processed<br>foods was<br>associated with<br>adiposity, but not<br>with metabolic<br>indicators in a<br>prospective cohort<br>study of Chilean<br>preschool children | Dietary data collected using 24-hour recalls at age 4 years.     Usual consumption of UPF estimated using the Multiple Source Method.     Statistical analysis included linear regression models for associations.     Inverse probability of censoring weights was applied to adjust analyses.     Metabolic indicators measured through blood samples after                       | Higher UPF consumption was linked to increased adiposity indicators in children.     No association was found between UPF and metabolic outcomes.     The study involved 962 Chilean preschool children over two years.     The results suggest that changes in adiposity indicators may precede alterations in metabolic markers in young children.                                                                                                                                                                                           |
| 7  | Ães et.al (2024)      | Patterns of ultra-<br>processed foods<br>consumption<br>throughout<br>childhood and<br>trajectories of<br>growth and<br>adiposity                                                                | <ul> <li>fasting</li> <li>Food frequency questionnaires (FFQs) assessed dietary intake at 4, 7, and 10 years.</li> <li>FFQs were validated using 3-day food diaries for accuracy.</li> <li>Model-based clustering defined UPF consumption patterns using a Gaussian mixture model.</li> <li>Mixed-effects models analyzed outcome trajectories adjusted for confounders.</li> </ul> | Four UPF consumption patterns were identified: lower, intermediate, transition, and higher.     Constantly higher UPF consumption linked to worse growth and adiposity trajectories.     Higher UPF consumption resulted in greater body weight acceleration.     BMI z-score increased more significantly with higher UPF consumption.     Early interventions to limit UPF consumption are essential for growth                                                                                                                              |
| 8  | Clemente et.al (2024) | Higher<br>consumption of<br>ultra-processed<br>foods and a pro-<br>inflammatory<br>diet are associated<br>with the normal-<br>weight obesity<br>phenotype in<br>Brazilian children               | Cross-sectional study with 364 children aged 8–9 years. Three 24-hour dietary recalls evaluated NOVA classification groups and C-DII scores. Poisson regression models assessed associations of UPF consumption and C-DII with NWO. Multivariable linear regression models adjusted for sex, age, income, and screen time.                                                          | <ul> <li>The study involved 364 children aged 8 to 9 years.</li> <li>18% of participants exhibited the normal-weight obesity (NWO) phenotype.</li> <li>Higher family income was associated with the NWO group.</li> <li>Increased ultra-processed food consumption linked to higher NWO prevalence.</li> </ul>                                                                                                                                                                                                                                 |
| 9  | Duque et.al (2022)    | Evidence of<br>Unhealthy Dietary<br>Patterns in the<br>School Lunch Sent<br>from Home for<br>Children in<br>Mexico City                                                                          | Cross-sectional study involving schoolchildren from four elementary schools in Mexico City.     Fasting venous blood samples collected to assess metabolic parameters.     Dietary patterns identified using K-means clustering based on school lunch contents.     Statistical analyses included Kruskal-Wallis and Pearson's chi-squared tests.                                   | <ul> <li>Among 350 schoolchildren (mean age 7.9 years), 24.9% were overweight and 21.7% obese.</li> <li>Four dietary patterns were identified from school lunches, with the highest calories from sandwiches, tortas, and sweetened dairy products (657 kcal).</li> <li>The median energy intake from school lunches was 448 kcal, and no dietary pattern was considered healthy due to high sugar content.</li> <li>Most children (89.4%) brought lunch from home, highlighting the need for better caloric distribution in meals.</li> </ul> |
| 10 | Carvalho et.al (2022) | Development and<br>validation of a<br>food frequency<br>questionnaire for                                                                                                                        | A cross-sectional study was<br>conducted with 130 children<br>aged 7 to 10 years.                                                                                                                                                                                                                                                                                                   | 95% of consumed foods were<br>ultra-processed, including<br>packaged snacks and powdered<br>juice.                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| No | Author                  | Research Title                                                                                                                                                                                                    | Methods Used                                                                                                                                                                                                                                                                                                                                           | Result                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                         | children aged 7 to<br>10 years                                                                                                                                                                                    | <ul> <li>An 81-item food frequency questionnaire was developed for the study.</li> <li>Validity was assessed by comparing with 24-hour dietary recalls.</li> <li>Reproducibility was evaluated using two food frequency questionnaires.</li> </ul>                                                                                                     | <ul> <li>Significant correlation coefficients for lipids (0.45) and carbohydrates (0.37).</li> <li>After energy adjustment, calcium correlation increased to 0.75; protein and lipid correlations were moderate.</li> <li>Recent study found 24% of children aged 7-10 were overweight.</li> <li>Food frequency questionnaire (FFQ) showed good calibration with reference methods, no systematic bias.</li> </ul> |
| 11 | Filgueiras et.al (2023) | Characteristics of<br>the obesogenic<br>environment<br>around schools are<br>associated with<br>body fat and low-<br>grade<br>inflammation in<br>Brazilian children                                               | Linear regression models assessed associations between obesogenic environment and body adiposity.  Generalised estimating equations were used for statistical analysis.  Body adiposity was measured using dual-energy X-ray absorptiometry (DXA).  Concentrations of adipokines were analyzed from blood samples                                      | <ul> <li>The mean age of participants was 8.5 years, with 52.1% being girls.</li> <li>Average total body fat percentage was 24.2%, with android fat at 17.7%.</li> <li>A positive association was found between the density of ultraprocessed food stores and total body fat.</li> <li>The study assessed the impact of the urban environment on children's adiposity and adipokine levels.</li> </ul>             |
| 12 | Chang et.al (2021)      | Association Between Childhood Consumption of Ultraprocessed Food and Adiposity Trajectories in the Avon Longitudinal Study of Parents and Children Birth Cohort                                                   | <ul> <li>Linear growth curve models assessed UPF quintile and adiposity outcomes.</li> <li>Multiple imputation addressed missing covariate data.</li> <li>Stepwise adjustment for covariates in analytical models.</li> <li>Quadratic age term evaluated nonlinearity in growth models.</li> <li>Study followed children from 7 to 24 years</li> </ul> | <ul> <li>Higher UPF consumption is linked to increased adiposity in children.</li> <li>Results remained consistent after excluding dietary misreporters.</li> <li>Longitudinal associations were analyzed from ages 7 to 24.</li> <li>Multiple imputation addressed missing data bias.</li> </ul>                                                                                                                  |
| 13 | Letícia et.al<br>(2024) | Nutritional Status<br>and Food<br>Consumption of<br>Preschool-age<br>Children: An<br>Observational<br>Cross-Sectional<br>Study Carried Out<br>in Schools<br>Covered by the<br>Brazilian School<br>Feeding Program | Anthropometric measurements were taken to assess weight and height.     Body Mass Index (BMI) was calculated using WHO standards.     A validated food frequency questionnaire collected data on food consumption.     Statistical analyses were performed using R software.                                                                           | <ul> <li>The study included 153 children: mostly aged 4 to 5 years old.</li> <li>35% of participants were classified as overweight or at risk of overweight.</li> <li>Low vegetable consumption was reported among the children.</li> <li>High intake of ultra-processed foods was observed.</li> <li>A significant association was found between BMI and triceps skinfold thickness.</li> </ul>                   |

RQ1: What is the effect of ultraprocessed food consumption on the risk of obesity in children?

The rise in ultra-processed food consumption among children has heightened concerns regarding obesity risk. UPFs are characterized by high levels of sugars and unhealthy fats, coupled with low nutrient density. This dietary trend is associated with numerous health complications, notably obesity in children. Ultra-processed foods (UPFs) are defined

by their elevated energy density, frequently comprising substantial quantities of sugars, fats, and sodium, which may result in augmented caloric consumption and subsequent weight gain. In pediatric populations, an increased intake of UPFs has been correlated with diminished consumption of vital nutrients such as dietary fiber, vitamins, and minerals, all of which are essential for optimal growth and development [28].

**Studies** indicate children that consuming high amounts of UPFs tend to have higher body mass index (BMI) zand waist circumference, scores suggesting a direct link between UPF intake and obesity [29]. Some studies suggest that the consumption of UPFs may be linked to food addiction behaviours, which can further exacerbate overeating and weight gain, and Children with food addiction tendencies showed higher consumption of energy-dense UPFs, indicating a potential cycle of unhealthy eating habits [30].

RQ2: Do children who consume ultraprocessed foods have a higher risk of obesity compared to those who consume minimally processed foods?

The intake of ultra-processed foods (UPFs) among children has emerged as a considerable concern owing to its possible correlation with obesity and various other health-related complications. UPFs are characteristically elevated in sugars, detrimental fats, and artificial additives, while simultaneously being deficient in vital nutrients. This analysis investigates the association between UPF intake and obesity susceptibility in children in contrast to those who consume minimally processed foods.

UPFs are associated with a lower intake of essential nutrients such as fiber. vitamins, and minerals. For instance, higher UPF consumption was linked to a lower intake of fiber, vitamin B12, and zinc, while showing a higher intake of iron and sodium [28]. The prevalence of UPF consumption among children is concerning, as it often replaces healthier food options. For example, in a cohort study, children with higher consumption had lower intakes of fruits, vegetables, and fiber-rich foods, which are healthy crucial for growth development [31]. The consumption of UPFs has been shown to correlate with increased energy density in diets, which can lead to excessive calorie intake and weight gain.

Research demonstrates that children exhibiting elevated consumption of ultraprocessed foods (UPF) show increased body mass index (BMI) z-scores alongside a higher incidence of overweight and obesity. For example, children categorized within the upper tertile of UPF consumption displayed markedly greater BMI and waist circumference when juxtaposed with those residing in lower tertiles [29]. Longitudinal research has substantiated that persistent elevated intake of ultra-processed foods during the developmental stages of childhood correlates with expedited weight gain and an augmented fat mass index, indicating a direct association with the risk of obesity.

Other determinants contributing to the excessive consumption of ultra processed foods (UPFs) among children encompass socio-economic variables. The intake of frequently elevated UPFs is among children hailing lower from socioeconomic strata, where the availability of nutritious food alternatives is severely constrained. This demographic pattern intensifies the susceptibility to obesity within these groups [29].

RQ3: What factors influence the relationship between ultra-processed food consumption and childhood obesity?

correlation between consumption of ultra-processed foods (UPF) and the incidence of childhood obesity is modulated by a multitude of determinants, encompassing dietary habits, socioeconomic variables, and the nutritional integrity of ingested food items. Grasping these determinants is imperative for the formulation efficacious public health initiatives aimed at mitigating childhood obesity.

The heightened consumption of ultraprocessed foods (UPFs) exhibits a robust correlation with increased energy density and diminished nutritional quality, which collectively augment the risk of obesity among children. UPFs are characteristically abundant in sugars, fats, and sodium, resulting in excessive caloric intake and subsequent weight gain.

Furthermore, an elevated consumption of UPFs is associated with a reduced intake of vital nutrients, including fiber, vitamins, and minerals. For instance, children who exhibit a higher consumption generally demonstrate **UPFs** significantly lower levels of fiber, vitamin B12, and zinc-nutrients that indispensable for optimal growth and development. The substitution of nutrientdense food items with energy-dense, nutrient-deficient UPFs further intensifies obesity risk, underscoring detrimental effects of UPFs on overall dietary quality and health outcomes [28] [29] [32].

variables significantly Economic influence the consumption patterns of ultra-processed foods (UPFs), particularly among hailing children from disadvantaged socioeconomic environments, these goods as frequently more economically accessible and widely available. This demographic phenomenon correlates strongly with elevated obesity prevalence within this cohort. Furthermore, the level education—particularly maternal attainment—exerts educational considerable effect on dietary selections, as mothers possessing lower levels of educational achievement are inclined to have offspring with increased UPF consumption, which is concomitant with a heightened risk of obesity. Another external determinant contributing to this dilemma is the marketing and accessibility of UPFs. These products are subject to vigorous marketing strategies targeting children, rendering them more attractive and readily obtainable. Such marketing methodologies can significantly influence dietary inclinations and propel higher consumption rates, especially within low-income households, thereby further intensifying the risk of childhood obesity [29].

Psychological determinants habitual practices significantly influence the dietary patterns associated with ultraprocessed foods (UPFs), primarily due to their appealing taste and convenient accessibility, which may compulsive eating behaviours, thereby complicating children's ability to manage their dietary consumption. As a result, this phenomenon lead can to an overconsumption of these foods and subsequent weight gain. Additionally, the inherent structural characteristics of UPFs. including their diminished fiber content, can interfere with satiety signalling, exacerbating overall food ultimately intake [33].

RQ4: How can nutritional interventions mitigate the impact of ultra-processed food consumption on childhood obesity?

The first, education and school intervention. Nutritional education programs enhance awareness of the adverse health effects of ultra-processed (UPFs), particularly foods their association with obesity and chronic diseases like type 2 diabetes and cardiovascular conditions. Through educating children and parents on the advantages of whole foods and the dangers of UPFs, families can make betterinformed dietary decisions. School-based nutritional interventions promote minimally processed food consumption. Participation in structured programs correlates with decreased ultra-processed food intake and increased consumption of fruits, vegetables, and whole grains [30] [31] [34].

The second, policy and environmental changes. Policies promoting healthy food

access in low-income regions effectively decrease children's intake of ultra-processed foods (UPFs). Programs like community gardens and farmers' markets can supply fresh produce and dietary foster healthier practices. Restricting UPF marketing to children may mitigate their intake of unhealthy foods. This entails controlling advertisements on various media to prevent promotion of health-risk products to children [31] [32].

The third, addressing food addiction. The significance of food addiction in ultra-processed food consumption is essential. Targeted interventions can facilitate healthier food relationships in children. Integrating psychological support with nutritional education may improve weight management efficacy [34].

The fourth, promoting healthy eating habits. Promoting family meals and home cooking can enhance nutrition and decrease dependence on ultra-processed foods (UPFs). Implementing strategies like meal planning and preparation can assist families in circumventing UPFs, resulting in improved dietary selections [30].

#### **Conclusion**

The findings of this systematic review demonstrate a significant correlation between ultra-processed food (UPF) consumption and elevated obesity risk in children. UPFs, noted for their high sugar. saturated fat, and sodium content, alongside low fiber and nutrient levels, are pivotal in promoting excessive caloric intake and suboptimal dietary quality in the pediatric population. In contrast to their counterparts consuming minimally processed foods, children with high UPF intake show increased body mass index (BMI) and waist circumference. Additionally, elements such as food addiction, low socioeconomic status, and exposure to unhealthy food marketing intensify UPF consumption and heighten susceptibility to childhood obesity.

Comprehensive nutritional interventions effectively alleviate the adverse effects of UPF consumption on childhood obesity. Nutrition education within schools and families can enhance awareness of UPF risks and promote healthier food choices. Moreover, policy measures limiting UPF marketing to improving children and access nutritious foods in low-income areas are essential for addressing nutritional The incorporation inequalities. psychological strategies to counteract UPF addiction, in conjunction with encouragement of healthy eating practices like home cooking and family meals, is promising for reducing childhood obesity rates and improving nutritional quality.

### References

- [1] E. Bonilauri, "Consumption of ultra-processed foods and noncommunicable diseases," *J AMD*, vol. 27, no. 2, pp. 125–125, 2024, doi: 10.36171/jamd24.27.2.7.
- [2] Seyit Ramazan KARADOÄžAN and Eren Canpolat, "The relationship of ultra-processed foods with some diseases," *Food Health*, vol. 10, no. 4, pp. 306–315, 2024, doi: 10.3153/fh24029.
- [3] Carlos Augusto Monteiro *et al.*, "Ultra-processed foods: what they are and how to identify them," *Public Health Nutr.*, vol. 22, no. 5, pp. 936–941, 2019, doi: 10.1017/S1368980018003762.
- [4] Allison L. Brichacek, Melanie R. Florkowski, Esther Abiona, and Karen M. Frank, "Ultra-Processed Foods: A Narrative Review of the Impact on the Human Gut Microbiome and Variations in Classification Methods," *Nutrients*, vol. 16, no. 11, pp.

- 1738–1738, 2024, doi: 10.3390/nu16111738.
- [5] Nicola Laurelle Wiles, "The battle against ultra-processed food consumption in a post-COVID-19 era," *South Afr. J. Clin. Nutr.*, vol. 35, no. 3, pp. i–ii, 2022, doi: 10.1080/16070658.2022.2105492.
- [6] Norman J. Temple, "Making Sense of the Relationship Between Ultra-Processed Foods, Obesity, and Other Chronic Diseases," *Nutrients*, vol. 16, no. 23, pp. 4039–4039, 2024, doi: 10.3390/nu16234039.
- [7] Svenja Fedde, Gerald Rimbach, Karin Schwarz, and Anja Bosy-Westphal, "[What is ultra-processed food and how is it related to diet-related diseases?]," *Dtsch. Med. Wochenschr.*, vol. 147 1–02, pp. 46–52, 2022, doi: 10.1055/a-1683-3983.
- [8] Pieter van der Lugt, "[Changes in the microbiota due to ultra-processed foods: obesity, cancer and premature death].," vol. 83, no. 2, pp. 278–282, 2023.
- [9] M.S. Chadha, Ratnakar Shukla, Rohit Kumar Tiwari, Dharmendra Kumar Dubey, and Karuna Singh, "Impact of Ultra-Processed Foods on Food Sustainability: Exposure Assessment and Health Implications," *Recent Adv. Food Nutr. Agric.*, vol. 15, 2024, doi: 10.2174/012772574x3276832409 10063234.
- [10] Anthony Fardet, "Ultra†processing should be understood as a holistic issue, from food matrix, to dietary patterns, food scoring, and food systems," *J. Food Sci.*, 2024, doi: 10.1111/1750-3841.17139.
- [11] Tamiris Lessa da Silveira, Caroline Cristina Gomes, Guilherme José de Souza Faria, Amanda de

- Oliveira Fagundes, and Allana Mendes Lima Ribeiro, "Obesidade infantil," *Int. Seven Multidiscip. J.*, vol. 3, no. 4, pp. 1300–1305, 2024, doi: 10.56238/isevmjv3n4-017.
- [12] VijayBhaskar Kanchipamu, "[Definitions and epidemiology of childhood obesity V. NÃ"gre].," vol. 73, no. 1, pp. 24–28, 2023.
- M. Fundoni, L. Porcu, and G. [13] "Systematic Melis. literature review: Main procedures guidelines for interpreting the Researching results," in Analysing Business: Research Methods in Practice, 2023, pp. 55-74. doi: 10.4324/9781003107774-5.
- [14] M. Viši , "CONNECTING PUZZLE PIECES: SYSTEMATIC LITERATURE REVIEW METHOD IN THE SOCIAL SCIENCES," Sociologija, vol. 64, no. 4, p. 543, 2022, doi: 10.2298/SOC2204543V.
- [15] M. I. Riaño-Casallas and S. Rojas-Berrio, "How to Report Systematic Literature Reviews in Management Using SyReMa," *Innovar*, vol. 34, no. 92, 2023, doi: 10.15446/innovar.y34n92.99156.
- [16] R. van Dinter, C. Catal, and B. Tekinerdogan, "A Multi-Channel Convolutional Neural Network approach to automate the citation screening process," *Appl. Soft Comput.*, vol. 112, 2021, doi: 10.1016/j.asoc.2021.107765.
- [17] F. G. Aleu and H. Keathley, "Design and application of a metaevaluation framework," presented at the IIE Annual Conference and Expo 2015, 2015, pp. 1777–1786. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971009513&partnerID=40&md

- 5=86f28f4cd5da29cc583019c4d7 4fca45
- [18] K. Harry and M. Alrezq, "Assessment of Critical Success Factors Using Meta-synthesis Evaluation," presented at the IISE Annual Conference and Expo 2022, 2022. [Online]. Available: https://www.scopus.com/inward/r ecord.uri?eid=2-s2.0-85137172797&partnerID=40&md 5=142e9a05d15585cd8118051d0 379fba3
- [19] Li-Or Sharoni, Rafael Sacks, Timson Yeung, Otto Alhava, Enni Laine, and Jhonattan Martinez Ribon, "The PICO Framework for Analysis and Design of Production Systems Construction," for presented at the Annual Conference of the International Group for Lean Construction, 2023. doi: 10.24928/2023/0188.
- [20] Mariuxi Bruzza, Amparo Cabrera, and Manuel Tupia, "Survey of the state of art based on PICOC about the use of artificial intelligence tools and expert systems to manage and generate tourist packages," 2017. doi: 10.1109/ICTUS.2017.8286021.
- [21] F. J. García-Peñalvo, "Developing robust state-of-the-art reports: Systematic Literature Reviews," *Educ. Knowl. Soc.*, vol. 23, p. E28600, 2022, doi: 10.14201/eks.28600.
- [22] K. L. Lane and R. J. Kettler, "Literature Review, Questions, and Hypotheses," in *Research Methodologies of School Psychology: Critical Skills*, 2019, pp. 24–41. doi: 10.4324/9781315724072-2.
- [23] M. Saputra, P. I. Santosa, and A. E. Permanasari, "Consumer Behaviour and Acceptance in Fintech Adoption: A Systematic

- Literature Review," *Acta Inform. Pragensia*, vol. 12, no. 2, pp. 468–489, 2023, doi: 10.18267/j.aip.222.
- [24] V. O. Trung Quang and A. Riewpaiboon, "A literature review of health economic evaluation: A case of vaccination on systematic review analysis," *Int. J. Pharm. Sci. Rev. Res.*, vol. 39, no. 2, pp. 300–308, 2016.
- [25] John Alex Torres YÃ;nez, Evelyn Natividad Analuiza Rea, and Tania Abigail Cevallos Fuel, "Analysis by literature review with PRISMA 2020 methodology of laparoscopic surgical complications of ovarian cysts," *Salud Cienc. Tecnol.*, 2024, doi: 10.56294/saludcyt2024936.
- [26] Marcela Diaz-Guzman Verastegui, Rodrigo Sandoval-Almazan, and José Melchor Medina-Quintero, "A Literature Review of E-Government Research in Mexico Utilizing the PRISMA Methodology," Int. J. Public Adm. Digit. Age, 2023, doi: 10.4018/ijpada.327856.
- [27] "PRISMA: A Novel Approach for Deriving Probabilistic Surrogate Safety Measures for Risk Evaluation," 2023, doi: 10.48550/arxiv.2303.07891.
- [28] "UltraProcessed-Foods-and-Nutritional-Intake-of-Children-and-Adolescents-from-Cantagalo-So-Tom-and-Prncipe\_2024\_Multidisciplinary-Digital-Publishing-Institute-MDPI.pdf".
- [29] "Ultraprocessed Food Consumption and Cardiometabolic Risk Factors in Children.pdf".
- [30] V. Magalhães, M. Severo, S. Vilela, D. Torres, and C. Lopes, "Patterns of ultra-processed foods consumption throughout childhood and trajectories of

- growth and adiposity," *Clin. Nutr.*, vol. 43, no. 10, pp. 2364–2371, 2024, doi: 10.1016/j.clnu.2024.08.032.
- [31] "Ultra-processed foods consumption and diet quality of European children, adolescents and adults Results from the I.Family study.pdf".
- [32] B. Mete *et al.*, "The association between ultra-processed food consumption and low-grade inflammation in childhood: A cross-sectional study," *Nutr. Bull.*,

- vol. 49, no. 4, pp. 538–549, 2024, doi: 10.1111/nbu.12711.
- [33] "Higher consumption of ultraprocessed foods and a proinflammatory diet are associated with the normal-weight obesity phenotype in Brazilian children.pdf".
- [34] "The-impact-of-food-addiction-behaviours-on-the-treatment-of-overweight-students\_2023\_Cambridge-University-Press.pdf".